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Can we solve large, sparse systems of linear
equations more efficiently?

e linear system: Ax=Db

(A is large, sparse, and nonsymmetric)

e costs: (1) floating-point operations (FLOPSs)

(2) movement of data through memory

e iterative linear solver: GMRES(m)

(restarted Generalized Minimum Residual method)



Motivation

e linear systems are often time-consuming to solve

e GMRES(m) convergence can be slow

e Moving data is expensive

— iterative linear solvers:

access A once per iteration loop for A xx



Memory costs impact performance

memory hierarchy component || typical CPU latency value
L1 cache 1 - 3 cycles
L2 cache 6 - 20 cycles
main memory 60 - 140 cycles
disk 10,000 cycles!!!
e getting worse: improvement in

microprocessor performance vs. memory performance:
~ 60% per year < 10% per year

e memory costs >> FLOP costs for large problems




Approach for improving GMRES (m)

(1): FLOPs

e improve convergence behavior = reduce the number of
iterations

(2): data movement

e reformulate algorithm to reduce data movement
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e ‘'smart’ implementation
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Accelerating convergence

e augmented methods
(Morgan '95, '00, Chapman and Saad '97)

— add additional vectors to Krylov subspace

e nested Krylov (truncated)
(Van der Vorst and Vuik '94, de Sturler '96 and '99)

— approximately solve residual equation (Ae = r;)

o LGMRES
(Baker, Jessup, Manteuffel)

— combination of the approaches above



What should we choose for B for GMRES(m)?
(Ax=Db = AX =B)

e goal:
balance memory-usage and favorable numerical properties

e Observation:
restarted GMRES(m) throws away useful information
with every restart, which slows convergence

e OUr approach:
compensate for this loss — put the lost information in B!




Ax=b = AX =B

GMRES(m):

e restart cyclei: x;=x;_71+4+c¢c, cem(A ;1)

e ideally: C = Xexact — Xj—1 — Xj — Xexact

e error approximation: z; = x; — X;_1

idea:

e put the error approximation vector in B: B= b, z |



A new algorithm: B-LGMRES

B-LGMRES(m, 1):

e restart cyclei+1: Ax=b = AX =B
X =[x;, 0] (initial guess)
B=1[b, z ] (right-hand side)
i.e., augment b with an error approximation

(z; = X — Xj_1)

® Xj11 €Xj+Km(A,r;) + m(A,z)

I
GMRES(m)




B-LGMRES: an efficient implementation

Matrix-multivector multiply (Kaushik '99):

multiply A*4 vectors in =~ 1.5 the time for A*1 vector

e process the vectors in groups or “multivectors”

e interleave the vector components in memory

e.g., vi(j), va(j), v3(j), v4(j) are adjacent (row-wise)

e unroll the inner matrix multiplication loop
(across multivector elements)
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Evaluating the new method:

B-LGMRES(15, 1) vs. GMRES(30):

equal approximation space size (30)

variety of problems from several test collections

problem size: n=7,740 to 1,709,982
(nnz = 79,566 to 1,717,792)

either ILU preconditioner or no preconditioner

Argonne’s PETSc with modifications
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Some results...

Ratio of Execution Times
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= the new method (B-LGMRES) is generally faster
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Problem 12: 2-D fluid flow

size: n=13,535, nnz=390,607

method execution accesses || matrix-vector
time of A multiplies

GMRES(30) 1659+ .6 s | 1960 1960

B-LGMRES(15,1) || 785+ .2 s 1004 2008

= execution time correlates to number of accesses of A
(related to memory usage, not floating-point operations)
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Importance of an efficient implementation

B-LGMRES(15,1): Ratio of Time to Convergence
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Conclusions

(1): FLOPs

e accelerate GMRES(m) convergence by preventing
repetitiveness

(2): data movement

e algorithmic changes: changing b to B

e implementation: basic programming tricks

= modifying a linear solver to reduce data
movement is a viable approach to gaining efficiency!
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